Discussion of "Sovereign Debt Risk Premia and Fiscal Policy in Sweden"

Per Krusell Institute for International Economic Studies (Stockholms Universitet)

June 2010

Per KrusellInstitute for International EconorDiscussion of "Sovereign Debt Risk Premia a

The purpose of the paper

To think about how sovereign debt default premia and debt sustainability are related,

Coherent: using a dynamic stochastic general-equilibrium (DSGE) model

Coherent: using a dynamic stochastic general-equilibrium (DSGE) model (i.e., "modern macro": makes sense to me...).

Coherent: using a dynamic stochastic general-equilibrium (DSGE) model (i.e., "modern macro": makes sense to me...).

Quantitative: the DSGE model uses parameters restricted by data (estimated/calibrated).

Coherent: using a dynamic stochastic general-equilibrium (DSGE) model (i.e., "modern macro": makes sense to me...).

Quantitative: the DSGE model uses parameters restricted by data (estimated/calibrated).

Case study for Sweden:

Coherent: using a dynamic stochastic general-equilibrium (DSGE) model (i.e., "modern macro": makes sense to me...).

Quantitative: the DSGE model uses parameters restricted by data (estimated/calibrated).

Case study for Sweden:

Examine the effects on fiscal limits and risk premia of different fiscal rules, modeled after some features of the Swedish system (such as a debt ceiling).

Coherent: using a dynamic stochastic general-equilibrium (DSGE) model (i.e., "modern macro": makes sense to me...).

Quantitative: the DSGE model uses parameters restricted by data (estimated/calibrated).

Case study for Sweden:

- Examine the effects on fiscal limits and risk premia of different fiscal rules, modeled after some features of the Swedish system (such as a debt ceiling).
- **2** Simulate the model to replicate the Swedish 1991-97 experience.

Per KrusellInstitute for International EconorDiscussion of "Sovereign Debt Risk Premia a

Here: "neoclassical" (Keynesian) model

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

Such models of government debt accumulation: strangely enough, relatively little done with quantitative DSGE models.

• Without default: candidate qualitative arguments based on non-Keynesian features are

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

- Without default: candidate qualitative arguments based on non-Keynesian features are
 - Ricardian equivalence

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

- Without default: candidate qualitative arguments based on non-Keynesian features are
 - Ricardian equivalence
 - tax smoothing

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

- Without default: candidate qualitative arguments based on non-Keynesian features are
 - Ricardian equivalence
 - tax smoothing
 - intergenerational issues and political economy.

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

Such models of government debt accumulation: strangely enough, relatively little done with quantitative DSGE models.

- Without default: candidate qualitative arguments based on non-Keynesian features are
 - Ricardian equivalence
 - tax smoothing
 - intergenerational issues and political economy.

Debt just does not seem to have been such a big issue?

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

Such models of government debt accumulation: strangely enough, relatively little done with quantitative DSGE models.

- Without default: candidate qualitative arguments based on non-Keynesian features are
 - Ricardian equivalence
 - tax smoothing
 - intergenerational issues and political economy.

Debt just does not seem to have been such a big issue? Well here (for Finanspolitiska Rådet) and now it is!

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

Such models of government debt accumulation: strangely enough, relatively little done with quantitative DSGE models.

- Without default: candidate qualitative arguments based on non-Keynesian features are
 - Ricardian equivalence
 - tax smoothing
 - intergenerational issues and political economy.

Debt just does not seem to have been such a big issue? Well here (for Finanspolitiska Rådet) and now it is!

This paper: tax smoothing.

Here: "neoclassical" (Keynesian) model, and cycles driven by technology shocks.

Such models of government debt accumulation: strangely enough, relatively little done with quantitative DSGE models.

- Without default: candidate qualitative arguments based on non-Keynesian features are
 - Ricardian equivalence
 - tax smoothing
 - intergenerational issues and political economy.

Debt just does not seem to have been such a big issue? Well here (for Finanspolitiska Rådet) and now it is!

This paper: tax smoothing.

Also: built-in automatic stabilizers (though the model is not of the Keynesian variety where "demand" helps).

• With default as an option for the government. Most relevant in the sovereign-debt literature.

- With default as an option for the government. Most relevant in the sovereign-debt literature.
 - Bulow-Rogoff (1989): very hard to explain sovereign borrowing because borrowers would always want to default.

- With default as an option for the government. Most relevant in the sovereign-debt literature.
 - Bulow-Rogoff (1989): very hard to explain sovereign borrowing because borrowers would always want to default.
 - Chatterjee-Corbae-Nakajima-Ríos-Rull (2007): in application for consumer borrowing, find ways to model costs of default and some consumers (with really "unlucky" income shocks) will rationally default (Ch. 11). Lenders rational too, charge premium.

- With default as an option for the government. Most relevant in the sovereign-debt literature.
 - Bulow-Rogoff (1989): very hard to explain sovereign borrowing because borrowers would always want to default.
 - Chatterjee-Corbae-Nakajima-Ríos-Rull (2007): in application for consumer borrowing, find ways to model costs of default and some consumers (with really "unlucky" income shocks) will rationally default (Ch. 11). Lenders rational too, charge premium.
 - Arellano (2008): applies Chatterjee et al. to countries, which then choose to default. Successful, truly quantitative literature.

- With default as an option for the government. Most relevant in the sovereign-debt literature.
 - Bulow-Rogoff (1989): very hard to explain sovereign borrowing because borrowers would always want to default.
 - Chatterjee-Corbae-Nakajima-Ríos-Rull (2007): in application for consumer borrowing, find ways to model costs of default and some consumers (with really "unlucky" income shocks) will rationally default (Ch. 11). Lenders rational too, charge premium.
 - Arellano (2008): applies Chatterjee et al. to countries, which then choose to default. Successful, truly quantitative literature.

This paper:

- With default as an option for the government. Most relevant in the sovereign-debt literature.
 - Bulow-Rogoff (1989): very hard to explain sovereign borrowing because borrowers would always want to default.
 - Chatterjee-Corbae-Nakajima-Ríos-Rull (2007): in application for consumer borrowing, find ways to model costs of default and some consumers (with really "unlucky" income shocks) will rationally default (Ch. 11). Lenders rational too, charge premium.
 - Arellano (2008): applies Chatterjee et al. to countries, which then choose to default. Successful, truly quantitative literature.

This paper:

• says the Arellano approach leads to too much default quantitatively (does not seem right to me!);

- With default as an option for the government. Most relevant in the sovereign-debt literature.
 - Bulow-Rogoff (1989): very hard to explain sovereign borrowing because borrowers would always want to default.
 - Chatterjee-Corbae-Nakajima-Ríos-Rull (2007): in application for consumer borrowing, find ways to model costs of default and some consumers (with really "unlucky" income shocks) will rationally default (Ch. 11). Lenders rational too, charge premium.
 - Arellano (2008): applies Chatterjee et al. to countries, which then choose to default. Successful, truly quantitative literature.

This paper:

- says the Arellano approach leads to too much default quantitatively (does not seem right to me!);
- is based more on "default whenever debt is higher than what can be sustained";

- With default as an option for the government. Most relevant in the sovereign-debt literature.
 - Bulow-Rogoff (1989): very hard to explain sovereign borrowing because borrowers would always want to default.
 - Chatterjee-Corbae-Nakajima-Ríos-Rull (2007): in application for consumer borrowing, find ways to model costs of default and some consumers (with really "unlucky" income shocks) will rationally default (Ch. 11). Lenders rational too, charge premium.
 - Arellano (2008): applies Chatterjee et al. to countries, which then choose to default. Successful, truly quantitative literature.

This paper:

- says the Arellano approach leads to too much default quantitatively (does not seem right to me!);
- is based more on "default whenever debt is higher than what can be sustained";
- and default is not modeled as an active decision.

- With default as an option for the government. Most relevant in the sovereign-debt literature.
 - Bulow-Rogoff (1989): very hard to explain sovereign borrowing because borrowers would always want to default.
 - Chatterjee-Corbae-Nakajima-Ríos-Rull (2007): in application for consumer borrowing, find ways to model costs of default and some consumers (with really "unlucky" income shocks) will rationally default (Ch. 11). Lenders rational too, charge premium.
 - Arellano (2008): applies Chatterjee et al. to countries, which then choose to default. Successful, truly quantitative literature.

This paper:

- says the Arellano approach leads to too much default quantitatively (does not seem right to me!);
- is based more on "default whenever debt is higher than what can be sustained";
- and default is not modeled as an active decision.

Key question, then: how much debt can be sustained?

- Present value of
- Ithe maximum tax revenues (top of the "Laffer curve")

- Present value of
- Ithe maximum tax revenues (top of the "Laffer curve")
- initial minus necessary expenditures

Equal to the

- Present value of
- Ithe maximum tax revenues (top of the "Laffer curve")
- initial minus necessary expenditures.

Equal to the

- Present value of
- Ithe maximum tax revenues (top of the "Laffer curve")
- immus necessary expenditures.

Comments on these, one by one:

• Present value calculated using a r - g (real interest rate net rate of output growth) of 5%.

Equal to the

- Present value of
- Ithe maximum tax revenues (top of the "Laffer curve")
- iminus necessary expenditures.

Comments on these, one by one:

• Present value calculated using a r - g (real interest rate net rate of output growth) of 5%. My comments:

Equal to the

- Present value of
- Ithe maximum tax revenues (top of the "Laffer curve")
- iminus necessary expenditures.

- Present value calculated using a r g (real interest rate net rate of output growth) of 5%. My comments:
 - 5% is WAY too big. Gives much too low debt sustainability.

Equal to the

- Present value of
- Ithe maximum tax revenues (top of the "Laffer curve")
- iminus necessary expenditures.

- Present value calculated using a r g (real interest rate net rate of output growth) of 5%. My comments:
 - 5% is WAY too big. Gives much too low debt sustainability.
 - 1% much more reasonable. Multiply all debt numbers by 5!

Equal to the

- Present value of
- Ithe maximum tax revenues (top of the "Laffer curve")
- iminus necessary expenditures.

- Present value calculated using a r g (real interest rate net rate of output growth) of 5%. My comments:
 - 5% is WAY too big. Gives much too low debt sustainability.
 - 1% much more reasonable. Multiply all debt numbers by 5!
- Or Top of Laffer curve: by taxing labor only. In reality, less distortionary taxes are available too (consumption, wealth, nominal assets).

Equal to the

- Present value of
- Ithe maximum tax revenues (top of the "Laffer curve")
- initial minus necessary expenditures

- Present value calculated using a r g (real interest rate net rate of output growth) of 5%. My comments:
 - 5% is WAY too big. Gives much too low debt sustainability.
 - 1% much more reasonable. Multiply all debt numbers by 5!
- Or Top of Laffer curve: by taxing labor only. In reality, less distortionary taxes are available too (consumption, wealth, nominal assets).
- Necessary expenditures: government spending and transfers are assumed exogenous. Does not make sense—look at Latvia!

Per KrusellInstitute for International EconorDiscussion of "Sovereign Debt Risk Premia a

A few other comments:

 Model is not quite coherent. (Default does not literally occur when the government cannot pay back.)

- Model is not quite coherent. (Default does not literally occur when the government cannot pay back.)
- Paper: if default, default on 10% (exogenous). Unsatisfactory (but so is general idea that default is not a choice).

- Model is not quite coherent. (Default does not literally occur when the government cannot pay back.)
- Paper: if default, default on 10% (exogenous). Unsatisfactory (but so is general idea that default is not a choice).
- Missing: welfare, political constraints and political signaling.

- Model is not quite coherent. (Default does not literally occur when the government cannot pay back.)
- Paper: if default, default on 10% (exogenous). Unsatisfactory (but so is general idea that default is not a choice).
- Missing: welfare, political constraints and political signaling. Summary critique:
 - Too many ???s for me to take the quantitative results seriously.

- Model is not quite coherent. (Default does not literally occur when the government cannot pay back.)
- Paper: if default, default on 10% (exogenous). Unsatisfactory (but so is general idea that default is not a choice).
- Missing: welfare, political constraints and political signaling. Summary critique:
 - **O** Too many ???s for me to take the quantitative results seriously.
 - Output: "Output: Content of the second se

A few other comments:

- Model is not quite coherent. (Default does not literally occur when the government cannot pay back.)
- Paper: if default, default on 10% (exogenous). Unsatisfactory (but so is general idea that default is not a choice).
- Missing: welfare, political constraints and political signaling. Summary critique:
 - **O** Too many ???s for me to take the quantitative results seriously.
 - Of the second second

Summary praise:

A few other comments:

- Model is not quite coherent. (Default does not literally occur when the government cannot pay back.)
- Paper: if default, default on 10% (exogenous). Unsatisfactory (but so is general idea that default is not a choice).
- Missing: welfare, political constraints and political signaling.
 Summary critique:
 - **O** Too many ???s for me to take the quantitative results seriously.
 - Of a "Default when unsustainable" approach: would lead to defaults only with huge debts. In reality, defaults occur earlier. Does Greece really want to pay back? Quite possibly not.

Summary praise:

Ambitious in other ways—hard literature!

A few other comments:

- Model is not quite coherent. (Default does not literally occur when the government cannot pay back.)
- Paper: if default, default on 10% (exogenous). Unsatisfactory (but so is general idea that default is not a choice).
- Missing: welfare, political constraints and political signaling.
 Summary critique:
 - **O** Too many ???s for me to take the quantitative results seriously.
 - Default when unsustainable" approach: would lead to defaults only with huge debts. In reality, defaults occur earlier. Does Greece really want to pay back? Quite possibly not.

Summary praise:

- Ambitious in other ways—hard literature!
- The quantitative literature is really very scant. (Great opportunities for research to have impact!)

A few other comments:

- Model is not quite coherent. (Default does not literally occur when the government cannot pay back.)
- Paper: if default, default on 10% (exogenous). Unsatisfactory (but so is general idea that default is not a choice).
- Missing: welfare, political constraints and political signaling.
 Summary critique:
 - **O** Too many ???s for me to take the quantitative results seriously.
 - Default when unsustainable" approach: would lead to defaults only with huge debts. In reality, defaults occur earlier. Does Greece really want to pay back? Quite possibly not.

Summary praise:

- Ambitious in other ways—hard literature!
- On the quantitative literature is really very scant. (Great opportunities for research to have impact!)
- Laffer-curve computations useful. Need to distinguish "not being able to pay back" from "not wanting to". Key in practice!